
392 

REFERENCES 

1. Pontriagin, L. S. and Mishchenko, E, F., The problem ofevasion of 
contact in linear differential games. Differentsial’nye Uravneniia, Vol. 7, NQ 3, 
1971. 

2. Mishchenko, E, F, , Problems of pursuit and evasion of contact in the theory 
of differential games. Izv. Akad. Nauk SSSR, Tekhn. Kibernetika, N* 5, 1971. 

3. Gusiatnikov, P. B., On one class of nonlinear differential games. In: Theory 
of Optimal Solutions, NQl, Kiev, 1969. 

4. Gusiatnikov, P. B., On the information available to players in a differential 

game. PMM Vol. 36, Ng 5, 1972. 
5. Mezentsev, A, V. , On a differential game. Differentsial’nye Uravneniia, 

Vol. 8, N* 10, 1972. 

Translated by N. H. C. 

UDC 62-50 

INVESTIGATION OF CERTAIN OPTIMAL SYSTEMS BY THE AVERAGING METHOD 

PMM Vol.38, N’3, 1974, pp.422-432 
L. D, AKULENKO 

(Moscow) 
( Received December 18, 1973) 

We construct the canonic averaging scheme for solving certain optimal control 

problems on the basis of Pontriagin maximum principle. We assume that the 
plant is described by a system with rotating phase [1] , while the control enters 
only into the perturbing terms [2]. The analysis is carried out on a large time 
interval so that the controlled quantities vary significantly. The procedure de- 
veloped is illustrated by concrete examples of quasi-linear oscillatory systems. 
The small parameter method for the approximate solution of optimal control 

problems was employed in [ 2 - 51. 

1. Statement of the problem, We formulate the problem of controlling a 
certain mechanical plant by small control actions. Let the corresponding system of 

equations have the form 

.c’ = &X CT, 3.7 y, u, E), z = E (t - to) + 70, 2 (to) = zo (1.1) 

i/’ = Yo(~, z, Y) + EY(% 2, !.j, U, E), Y (to) = Y, 

Here IC, X are n-dimensional vectors ; y, Y,, Y are In-dimensional vectors; u is 
the &dimensional control, T is “slow time”, e is a small scalar parameter, e E 10, 
aO]. We assume that the right-hand sides of system (1.1) have been defined in some, 
possibly unbounded, region of variation of their arguments and in it satisfy all the neces- 
sary smoothness and periodicity conditions which follow from the subsequent construc- 

tions. The control’s performance criterion will be introduced somewhat later, after the 
derivation of a standard system with rotating phase. 

From (1.1) it follows that when E = 0 the system becomes uncontrollable 
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y”*= Y&T, 9, y”), 1; = =. = const, rP = cons% 

Let this unperturbed system allow a complete (n -j- m -I- 1) -parameter family of solu- 

tions of the form (61 

go = (n/24 [y (t)(t - 44 -I- $01 + rp (v (r>(t - to) + VO, r, c, X0) 

Here n is a constant m-vector with components equal to zero for the oscillating vari- 

ables ; Y (T) is the scalar natural frequency depending on a parameter z; Q = y (r> 

(t - to) $- $s is the unperturbed phase, 9s is the phase constant, c is a (m - 1) - 

dimensional vector of the family’s independent parameters, 9, ($, z, c, so) is a uni- 
form almost-periodic function of phase 9. It is natural to assume that me right-hand 
side of system (1.1) is a uniform almost-periodic function of the rotating components 

of the fast vector y. 
Let us introduce the control‘s performance criterion for system (1.1). Suppose that 

the purpose of control is to minimize the functional 

where, by virtue of the perturbed system (1. l), the parameter c is a slowly varying func- 
tion of time f. It is natural to require that the integrand G be uniformly almost peri- 
odic with respect to the fast variable (phase),$ and be analogously smooth. The integ- 

ral’s upper limit is taken to be a fixed quantity ; moreover, T is of the order of 8-l 
so that the controlled slow variables 2 and c vary signi~~n~ly on the time interval 
f t,, Tl being considered, i.e. by a magnitude of the order of unity. For such a choice 

of T the factor E in front of the integral in (1.2) is chosen for the purpose of equaliz- 
ing the orders of the quantities occurring in the functional and such that the resulting 

value of the optimal control zz (t) is of the order of unity in magnitude. 

For convenience of treatment we reduce system (1.1) to a standard form with rotating 
phase [l, 71 

Id’ = EX (T, 5, yO($, ‘c, C, X), 71, E) 

c’ = &C (t, x, $,, c, u, a) 

$,’ = v (7) -+ &Y (z, 2, $, c, u, 8) 

Here the functions c and Y are determined as the solution of the linear algebraic 
system 

$$ Y -/- F c = Y (z, z, y”, u, E) - 5 x (z, 5, f, u, 8) - ag 

where the diffe~ntiation of 9 with respect to T is not carried out. It is assumed that 
the functional determinant (the Wronskian for the unperturbed variational system) 
det (ago / 9tj, dy’ / &) is not zero in the considered region of the arguments r‘, 4, c 

and 5. 
Uniting x and c into one slow vector a, we write the system with rotating phase 

obtained in the standard form 

a’ = Ef (T, a, q, u, E), a (to) = a, (I. 3) 

+* = v (r> + &F (r, a, 9, @, a), 9 (to) = 90 

Here n is a slow vector of arbitrary dimension n, $ is the scalar rotating phase, i, e. 
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v (z) > Y,, > 0; the initial values of these variables are defined in terms of x0, y,,. 
Note that when the above-stated assumptions are satisfied, the right-hand sides of sys- 

tem (1.3) are smooth functions of their arguments in the region being considered and 
are uniform and almost-periodic in $. 

The control’s performance criterion (1.2) can be rewritten as 

J=g(a(T), ~(~),&)+~~G(~,~,~, u,~)dt-->min 
0 

(1.4) 

with respect to u, where u (t) E; 6, while TJ is some convex region of admissible 

values of the control I-vector. Note that without loss of generality we can set (2 zz 0. 
As a matter of fact, having augmented the vector a by one more component, varying in 

accordance with the equation 

ant1 (t(J) = 0 

functional (1.4) can be presented as a function of final values of the phase coordinates: 

J = g(o (0, 9 (T), e) -i- o,+,(T), i.e. we can take it that J = g(a (T), 4 (t), 

E), o = (.a,, - * ., an, &I+,)* 
The paper’s aim is to construct an approximate optimal solution of problem (1.3).(1.4) to 

any degree ofaccuracy with respect to the small parameter e on an asymptotically arbit- 
rarily large time interval, The optimization problem is solved on the basis of Pontria- 

gin maximum principle [8] under the assumption that such a solution exists and is unique. 
We note that a number of practical problems of the control of nonlinear and quasi-linear 
oscillatory and rotatory systems by small control actions, reduce to optimal problems 
(1.3), (1.4). A quasi-linear oscillatory system with one degree of freedom is examined 

in Sect. 3. 

2. Asymptotic solution of a two-point problem of ths maximum 
principle. The Hamiltonian for problem (1.3), (1.4) has the form 

H (r, a* 4, p, Q, a, a) = a (f, p) -+- (v -I- e0 - aG 

where p is a vector adjoint to a; 4 is a scalar variable adjoint to 9. The necessary 
optimality condition for the control u = v (t) (Pontriagin maximum principle [S]) is 

that H (r, 6 $, p, 4, p, E) =u”,; H (r, a, $, P, 4, 8, 4 

at any instant t E [to, 2‘1; the variables a and I# satisfy system (1.3) with n = 
v (i), while p and CJ satisfy the corresponding adjoint system and the transversality con- 

ditions at the right end. 
Let the control u = ~*(t, a, q, p, Q, E), rendering the maximum of the func- 

tion Ii when the other arguments are fixed and being a sufficiently smooth function 
uniform and almost-periodic in 9, be known and unique. We introduce the notation 

II* = H (r, a, *, p, 4, a*, a) = v(t)(I + eh(r, a, $, PI 4, EL*., e) 

Then, the solving of optimal problem (l-3),(1.4) reduces to constructing the solution 
of the two-point problem for the Hamilton system of equations 

a’ = ef*(z, a, Q, p, q, e), *,’ = v(r) + EF*(r, a, $, p, 4, e) (2.I) 
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Here the asterisk in the degree position denotes that the corresponding functions and their 
partial derivatives are taken with the known expression for u = u* (z, a, Q, p, q, E). 
The right-end conditions for the adjoint vector p, q, i.e. the transversality conditions, 
have the form 

P(T, a)=- $I$ ~(T,E)=-SIT (2.2) 

For the sake of generality we can assumethat the initial conditions for CZ, 9 also de- 

pend on E 
(2.3) 

Suppose that the solution of the maximum principle’s boundary-value problem (2.1) - 

(2.3) has been constructed and is unique. Then the solution of the original optimal prob- 

lem is known. The optimal control u = U* (7, a, 4, p, q, E) can be determined as 
the program control by the substitution of the known solution of the boundary-value prob- 

lem; as the “partial synthesis”: u =I ~*(t, a, 4, p (t), q (t), 6) or as the “total 

synthesis” if we solve the expression *b = r# (t) relative to t = t ($), which is possi- 
ble and unique, and we substitute into the adjoint vector. The optimal trajectory is also 

known, while the minimum value of the functional is computed by quadrature. 

Let us apply the method of averaging over the fast phase to system (2.1). As is known 
Cl. ‘I], the averaging method is connected with a change of variables, defined by certain 

partial differential relations whose integration leads to arbitrary functions of the slow 

variables. In 19, lo] it was shown that in the case of the Cauchy ‘s problem for a small 
t-periodic Hamittonian of the form a h (z, p, t) (x is the coordinate, p is the moinen- 

turn) these arbitrary functions can be used so that the averaged system also has the ca- 

nonic form. Below we develop an analogous method of canonic averaging over the fast 
phase 0, which simplify significantly the construction of the solution of the boundary- 

value problem (2.1) - (2.3). The order of the averaged system is lessened by two, 
Firstly, the slow variables are integrated independently of the phase and, secondly, the 
mean value of Q is constant since the averaged Hamiltonian does not depend upon the 

phase. If it does not depend on ‘c, then the “energy” integral is preserved. 

We go on to construct an averaged bo~da~-value problem, simpler to integrate, on 
the basis of whose solution we construct the approximate solution of the original prob- 

lem (2.1) - (2.3). Then we make wide use of the fact that the partial derivatives of 
the Hamiltonian, taken with u = ZL*, coincide with the full partial derivatives, i. e. 
with the derivatives of w* [5] 

since there hold the identities 

We shall construct a univalent canonic change of variables (o, $, p, g) to the new 
(averaged) variables (E, cp, q, fi), characterizable by the generating function s (x7 

07 4, r, B, e) PI t?S as &ds as 
p=aT' q=s7 _---&), cp=gp (2.4) 

such that the new (averaged) Hamiltonian is independent of rp. Moreover, the old and 
the new variables should coincide in the zero approximation (when e = 0). The 
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generating function S and the new Hamiltonian K are connected by the following 
differential relation : as 

z + ff*(% a, 'I', $ & 8) = K(z,L q,P, 8) 

which, with due regard to the representations 

s = (a, 4 4 +g -k eo (7, a, ‘Ic1, tl, p, a) (2.5) 

k’ = v (33 + aJ% (t, j, r, 6, F) 

reduce to the form 

(2.6) 

If function h is piecewise-continuous and uniformly almost-periodic in $, continuous 
in z, and continuously differentiable sufficiently often in the remaining arguments, then 
with the aid of these relations the desired functions o and k can be computed to any 

degree of accuracy with respect to the small parameter E in the form 

o (t, a, $7, 11, p, a) -= oo + &CT, + Es3.L + . . * (2.7) 

k (T, g, IJ, p, E) z-z iii0 + &kl + Sk2 _i- . . _ 

With due regard to (2.5) we substitute series (2.7) into Eq. (2.6) and we equate the 

coefficients of like powers of E. We obtain a linked sequence of equations and, in par- 

ticular, the relation 

v(r)* “* + Iz(r, a, $7 Y,?, 0) = ko(r, a, 7, P) 
whose solution is : 

For the succeeding un?znown coefficients- ki f ai (i > 1) there hold the analogous 

expressions 
k, = (ho. + -z - + j (hi -- (iti))d~ (2.Q) 

in which the functions hi are computed on the basis of the known quantities. For exam- 

ple,for i = 1. 2 

hl (r, 6 44 91, P> = ~+$~+~$+($)O_$$ (2.10) 
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and so on. Obviously, the accuracy of the constructions carried out is restricted by the 
degree of smoothness of the original Hamiltonian. If u*, the function G , and the right- 

hand sides of system (2.1) are only piecewise-~ntinuo~, then we can write out the so- 
called first-approximation equations 

(2.11) 

Here the zero in the subscipt denotes that e is assumed equal to zero, while the angle 

brackets denote averaging over the phase. In comparison with the exact Eqs. (2.1) sys- 

tem (2.11) yields an error of the order of E on the interval It,, T), T - E-~. 

Therefore, the initial and boundary conditions should be written out to this same accur- 

w 
E _o=%(O>, ~po=$J(O), q(T)=--g-lT, p= -glT (2.12) 

From the penultimate equation in (2.11) it follows that @ = con&, i.e. 8 occurs 
everywhere as a parameter. We note further that if (h,) is independent of t, then sys- 

tem (2.11) admits the integral k (E, q, @) = const, which makes it possible to les- 
sen the system’s order. In the case of a system with one degree of freedom the problem 

can be solved in quadratures, If the slow variables have been computed, then the value 
of p, (t) also is obtained by quadrature. 

The so-called improved first approximation p J, i. e. one satisfying system (2.X) with 
an error - E2 is 

Thus, suppose that the necessary number of coefficients cri, ki have been computed by 

formulas (2.8) - (2.10). i. e. the generating function and the averaged Hamiltonian 
(2.5) have been computed to the necessary degree of accuracy with respect to the small 

paramerer E. Then the averaged canonic system has a simpler form than the original 

(2.1) 
(2.14) 

and determines the averaged solution to the accuracy needed on the whole interval 

It,, 2’1 (when T - E -’ this accuracy is lower by unity than the accuracy of compu- 
tation of the averaged Hamiltonian). 

Let us now find the initial and boundary conditions for the averaged variables. Sup- 
pose that the general solution of system (2.14) has been constructed in the form 

(2.15) 
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Here the parameters Et,, TIT, fi and 9s as yet unknown. are subject to determination, 

We derive the relations needed. For this purpose the last two equations in (2.5) 

are solved with respect to a and I# 

a = E + aA (r, F, V, rl, @, a), II_? = ‘p + Ey (‘G, E, (l’, q, p, ej t2.16) 

The result obtained is substituted into rhe expressions for the adjoint variables p and q 

P = 9 + ep (7% E, 0% rl, B, E), 4 = fl + EQ (f, 5, cp, q, g, E) (2.17) 
where P and Q 

sions (2.16) have 

tions (2,3), (2.2) 

are functions of a. / aa and da / @ into which the found expres- 
been substituted. We now make use of the initial and boundary condi- 

(2.18) 

The system of equations obtained is solved relative to the unknown parameters Es, (PO, 
YT, fi. Obviously, all these computations should be carried out to the accuracy needed. 

We note that the approximate construction of expressions (2.16). as well as the com- 
putation of the desired parameters can be carried out by series expansion or by success- 
ive approximations in powers of the small parameter E. For example, the successive 
approximations scheme for the determination of expressions (2.16) has the form 

The unknown parameters are determined by a similar method 

@1+, U-+1) = - - 
?T I aa f 

- &P (tT, EC” (ET), cp”’ (T), &), P(l), 6) 

P 
u+u =; _ 26lil 

azl, T - EQ (TT, EC” (ET), 9”’ (T), q!?, P”‘, 4 
I 

As the zero approximation of the desired parameters we can take the values determined 
by Eqs. (2.12). For sufficiently small values of e and smooth right-hand sides the SUC- 

cessive approximations converge uniformly, i.e. can be computed with the degree of 
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accuracy necessary. Thus, if the solution of the averaged system (2.14) has been con- 
structed numerically or analytically, then the solution of the original two-point problem 

(2.1) -(2.3) can be foand to the same accuracy from formulas (2.16). (2.17). and to- 
gether with this solution, the approximate solution of optimal problem (1.3). (1.4). 

3. Exrmpla. In practice we often limit ourselves to constructing the first-appro- 
ximation solution which yields a qualitative picture of the control process and ensures 
an error of the order of E on a large time interval of the order of e-1. Let us consider 

a weakly-controlled quasi-linear oscillatory system with one degree of freedom 

2.’ t v’ (t) X = Ef (r, 5, X’, U), 5 (to) = So, X’ (to) = 50' (3.1) 

where r is slow time, Y (z) is the frequency of the oscillations, constant when e = 0, II 

is the scalar control. By the substitution 

x= asin*, x* = avcos IjJ 

Eq. (3.1) is reduced to the following system : 

a’ = y+ [f (t, a sin Q, av (z)cos $, u) - uv’ (z) cos $1 cos $ 

rg+MIi$+ [av’ (t) cos $ - f (z, a sin tp, av (z) cos *, u)] sin 11: 

(theprimedenotes a derivative with respect to T). Let u (t) E U, where U is some con- 

vex set ; we pose the problem of finding an admissible u such that 

J=;g(l(T).~(~))~a~G(r,R,ly,u)dl=roin 
4 U&U 

For the particular case of a right-hand side of the form 

f (t, *, x’, 4 = fo b, 5, z-1 + d (-4 u, I d (4 1 < 00 

we consider the following subcases : 

at lul<=~, CoW>O, k#Q 

b) I uI<w, 
a2 V-) J=f--y- 

We examine the first subcase briefly, The Hamilton’s function of the system 

H==rq+ + (V + du)w-EGOUZ 

v@,a,*)=fo-av'cos$, w(a,$,p,q)=Pcoj\li-- -$ein$ 

is maximal for U* = &U / 2v Go , i.e. 

H*=vq++ 

The original two-point problem is described by the equations 

E dr 
a* = y vcosll+ ; @Go - -wcos$. a (lo) = a0 

~.=v_~*siny,_~~ 2v2 *GO wsin\l,, 9 (In) = $1 
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+-$ 
i 
~+-LLsiilQ)W-‘+ + 

2vGo a2 v sin \c1, p(T)=--kka(7’) 

dz 4.__z?- _ 
v alC, ( vw + &Go wz , 

) 
q(T) =o 

(a0 = (50~ + ZO'~)"', $0 = arc tg (v (TO) 20 / 3~~')) 

The corresponding first-approximation averaged two-point problem is essentially sim- 
pler than the original and is described by the equations 

4~=~fo&,F)4&$l, 5 (to) y a0 

e v’ fi dfoc (t 9 E) -- ?‘=24--, at n7 rl (T) = - 4 (T) , 

E . 
‘p = v - - 10s (f I 5) 7 

E 
cp (to) = $0 (P = 0) 

Here 

If the function fo is linear in -2 and .z* or if r is absent in the system, then the first- 
approximation equations can be integrated up to the end. For example, let 

Y = const, d = I, f. = -22Ax’ f ~1x3, Go = 1, h, p = const 

Then the approximate solution can be written out explicitly 

f(~t)= 
‘IT 

ao- -e 8hva 
-rh(T-f,) e-‘h(f-f,) 

1 
11T 

+ W” 
rh(L-T) 

7, (Et) = 7,TeL’+T) 

Here 
TjT = - jfaoe-‘VT-‘O) , + & [ 1 - pw-loq j-1 

lim qT = _ 8hv2aoe-eh(T-‘o) [I _ e-2eh(T-t”)~-, 
kdm 

At the end of the control interval the approximate value of the oscillation amplitude 

equals k (ET) = -qT / k: moreover, lim E (Ed) = 0, and in the first approximation 

the perturbed oscillation frequency is : ‘-CQ t 

$2 (et) = v - &EpEa (Et), V (t) = $0 t-s Q (Etl) dtl 

The optimal control and the functional’s minimum klue with an error of the order of 

e are: 
‘l (et) ‘1T 

u*.=-cos~~v(t)f-ige 2v E).(t-T) cos cp (t) 

% 1 
Jrni* = 2 1 _7T+& 

(, _ e-W (T-b))] 

We now examine subcase (b) briefly. The Hamiltonian 

H = vq + t (v + du) w 

is maximal for U* = uo sign w if w + 0 , i. e. 

H*=vq+$ vw+s~Iw, 
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The original two-point problem is described by the equations 
e 

a’ = u W.s++$ duo cos $ sign w , a (lo) = a0 

$‘=V-_vsin$--$-+sin$signw, 9 W = $0 

P’=--dew--~~sinIp(V+du*), P(T)=qa(T) 

+_Lallw_ E aw 
v a* u +“+du*), q(T) = 0 

The corresponding first-approximation averaged two-point problem has the form 

E’=%(f,,(t,f)-_~++~l~osignrl), E (to) = a0 

fos (CT 4) ‘pk-$ 4 , cp (to) = $0 

Now, under the assumption that tl is sign-constant, it is required to construct the solu- 
tion of the Cauchy problem for the first equation. 

The author thanks F, L. Chernous’ko for attention to this paper and for important re- 

marks. 
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